

Page 1 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Dual Flow Computer Library
Developer’s Guide: using BhiLibDualFc in an e!COCKPIT
project
The following sections provide detailed instructions for creating a simple e!COCKPIT program
which uses the dual flow computer library.

Page 2 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Contents
Developer’s Guide: using BhiLibDualFc in an e!COCKPIT project .. 1

Obtain the library file .. 3

Install the library in e!COCKPIT ... 3

Add the Library to Your Project .. 4

Create persistent memory structures which will be used by the library ..5

Add necessary variables to the Program which calls the library function block 6

Add supporting Code to the Program ... 8

Link Program Visualizations to Library Visualizations ... 11

Adjust e!COCKPIT project Task Interval ... 12

Licensing ... 13

Trial Mode ... 13

Steps to Obtain a Runtime License .. 13

Modifying your PLC program without corrupting library data ... 14

How your program can interact with the Library ... 16

Reading Current Calculated Values from your program... 16

Reading Gas Meter Values .. 16

Reading Oil Meter Values .. 16

Reading Meter Configuration Values from your program .. 16

Reading Station Configuration Values from your program ... 17

Writing Meter Configuration Values from your program ... 17

Writing Station Configuration Values from your program .. 17

Page 3 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Obtain the library file
Request the BhiLibDualFc compiled-library from info@beyond-hmi.com. There is one version of
the library. It supports a single (one) gas meter run and a single (one) liquid meter run. The
meter run can be either an allocation meter or a custody-transfer meter.

Install the library in e!COCKPIT
 Open any project in e!COCKPIT
 Navigate to a Library Manager

 Select Library Repository

 Select Install..
 Navigate to the downloaded library file and click on Open.
 Verify that the library was installed in the Miscellaneous section

Page 4 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Add the Library to Your Project
 Create a project and designate the Device(s) in the project.
 Navigate to a Library Manager

Select Add Library

Page 5 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Start typing the library name until the library appears in bold text

Select the Library and select OK.

Create persistent memory structures which will be used by the library

The library needs some of its data structures to persist – even when the PLC program is loaded
or the power to the PLC is cycled. Your program needs to allocated these structures and pass
them to the library.

If one has not already been created, add a Persistent Variables Object to the Project

Navigate the project’s Persistent Variables object

Add the following declarations to the persistent memory area (Copy these lines into the
e!COCKPIT window):

VAR_GLOBAL PERSISTENT RETAIN

 sLib_stations : ARRAY[0..MAX_GAS_STATIONS - MIN_GAS_STATION] OF GasFcStation;

 sLib_meters : ARRAY[0..MAX_METERS - MIN_METER] OF DualFcMeter;

 sLib_cfxProductCode : ARRAY[0..MAX_METERS - MIN_OIL_METER] OF STRING(47);

 bhiLibMemArea : ARRAY[0..BHI_DUALFCLIB_MEM_AREA_ARRAY_MAX_VALUE] OF BYTE;

END_VAR

Page 6 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Add necessary variables to the Program which calls the library function block

The following illustrates how the library can be used with a Structured Text Program. The code
is reproduced below the screen capture. The following example code assumes that the PLC_PRG
program will call the library.

Page 7 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

VAR
 ///
 // THESE VARIABLES ARE REQUIRED FOR INTERFACE TO THE BHI LIBRARY
 // AND TO PROVIDE THE LIBRARY WITH PERSISTENT MEMORY TO WORK WITH
 ///
 fbCyclic : BhiLibDualFC.FbCyclic;
 ptr_bhiLibMemArea : POINTER TO BYTE := ADR(PersistentVars.bhiLibMemArea);

 ///
 // THESE VARIABLES ARE USED IN THE SAMPLE CODE TO PASS VALUES
 // BETWEEN THIS HOST PROGRAM AND THE LIBRARY
 // they may not ALL be necessary - depending on how many of the meters you are using
 ///
 (*** value determined by the host via I/O or MODBUS & passed to library ***)
 rGasMeterStaticPressure_psia : REAL; // gas meter "live" static pressure (as REAL)
 rGasMeterDifferentialPressure_inH2O : REAL; // gas meter "live" differential pressure (as REAL)
 rGasMeterTemperature_F : REAL; // gas meter static "live" temeprature (as REAL)
 cGasMeterValues : GasFcCurrentGasMeterValues; // struct used to retrieve "live" values
from the library
 cGasMeterConfig : GasFcCurrentConfig; // struct used to retrieve configuration values from the
library

 // the following are arrays because there are two liquid meters: liq meter 2 and liquid meter 2
 rOilMeterPressure_psig : ARRAY[2..3] OF REAL; // oil meter "live" flowing fluid pressure
at meter(as REAL)
 rOilMeterTemperature_F : ARRAY[2..3] OF REAL; // oil meter "live" flowing fluid
temperature at meter (as REAL)

Page 8 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

 rOilMeterSandW_percent : ARRAY[2..3] OF REAL; // oil meter S&W percent (as REAL)
 rOilMeterDensity_API : ARRAY[2..3] OF REAL; // oil meter "live" flowing density at meter
(as REAL)
 // NOTE: drive gain is optional. Not required for calculations
 rOilMeterCoriolisDriveGain : ARRAY[2..3] OF REAL; // oil meter "live" meter drive gain value
(as REAL)
 lrOilMeterAccumulatedPulses : ARRAY[2..3] OF LREAL; // oil meter "live" meter pulse accumualtion
value (as LREAL)
 cOilMeterValues : ARRAY[2..3] OF DualFcCurrentOilMeterValues; // struct used to retrieve "live"
values from the library

 ///
 // THIS VARIABLE IS USED TO CONTROL THE FLOW OF THE MAIN PROGRAM
 // ON FIRST TASK CYCLE, CERTAIN INITIALIZATION/HOUSEKEEPING TASKS MUST BE DONE - JUST ONCE
 ///
 xIsInitialized : BOOL := FALSE;

 ///
 // THESE VARIABLES ARE USED BY THE SAMPLE PROGRAM TO SIMULATE FLOW
 ///
 lrSimulatedOilMeterAccum : LREAL;
 lrSimulatedOilMeterKnownAccum : LREAL;
 sendGasDp : REAL;

 cycleCount : INT := 0;
 waitCount : INT := 0;

END_VAR

Add supporting Code to the Program

The following illustrates how the library can be used with a Structured Text Program. The code
is reproduced below the screen capture.

IF xIsInitialized THEN

 ///
 // YOUR CODE TO ACCESS I/O OR COMMUNICATIONS NETWORK TO GET "LIVE" METER VALUES
 ///

 // the example below uses values entered on the main visualization

 IF (waitCount > 35) THEN
 // update the value that we send to the library
 // simulates scanning of a meter with Modbus every 35/20ths of a second
 lrSimulatedOilMeterKnownAccum := lrSimulatedOilMeterAccum;
 waitCount := 0;
 ELSE
 waitCount := waitCount + 1;
 END_IF;

 cycleCount := cycleCount + 1;
 IF cycleCount > 1000 THEN
 cycleCount := 0;
 END_IF;

 // this code uses the input values from the visualization screen to populate the variables
 // which will be used to pass live values to the library
 // there is a little twist here because this sample program uses a checkbox on the visualization
 // to either have flow or to stop flow to all meters at the same time

Page 9 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

 rGasMeterStaticPressure_psia := g_gasSp;

 IF (g_bFlowing) THEN
 rGasMeterDifferentialPressure_inH2O := g_gasDp;
 ELSE
 rGasMeterDifferentialPressure_inH2O := 0.0; // simulate no DP
 END_IF;

 rGasMeterTemperature_F := g_gasT;

 IF (g_bFlowing) THEN
 // simulation of a moving accumulated quantity
 // this sample program uses the same accumulator for both oil meters
 lrSimulatedOilMeterAccum := lrSimulatedOilMeterAccum + g_accumIncr;
 ELSE
 ;
 // and don't increment the totalizer
 END_IF;

 rOilMeterPressure_psig[2] := g_oilSp[2];
 rOilMeterTemperature_F[2] := g_oilT[2];
 rOilMeterSandW_percent[2] := g_oilSwPercent[2];
 rOilMeterDensity_API[2] := g_oilDensity_API[2];
 rOilMeterCoriolisDriveGain[2]:= g_oilDriveGain[2];
 lrOilMeterAccumulatedPulses[2] := lrSimulatedOilMeterAccum;

 rOilMeterPressure_psig[3] := g_oilSp[3];
 rOilMeterTemperature_F[3] := g_oilT[3];
 rOilMeterSandW_percent[3] := g_oilSwPercent[3];
 rOilMeterDensity_API[3] := g_oilDensity_API[3];
 rOilMeterCoriolisDriveGain[3]:= g_oilDriveGain[3];
 lrOilMeterAccumulatedPulses[3] := lrSimulatedOilMeterAccum;

 ////// end of example code used to simulate inputs //////

 ///
 // YOUR MAIN PROGRAM MUST CALL THE "...Update<>MeterLive" METHODS ON EACH PASS
 // FOR EACH METER THAT YOU ARE USING (up to 1 gas meter and up to 2 oil/liquid meters)
 // USING THE LATEST-AVAILABLE LIVE METER VALUES
 ///

 BhiLibDualFc.FuUpdateGasMeterLive(1, // gas meter number is 1
 rGasMeterStaticPressure_psia, // "live" value - most recently
acquired value
 rGasMeterTemperature_F, // "live" value - most recently acquired
value
 rGasMeterDifferentialPressure_inH2O, // "live" value - most
recently acquired value
 0); // pulse count is always zero for AGA-3 meters. This is for
future functionality

 BhiLibDualFc.FuUpdateOilMeterLive(2, //meter number
 rOilMeterPressure_psig[2], // pressure
 rOilMeterTemperature_F[2], // temperature
 rOilMeterSandW_percent[2], // S&W percent
 lrOilMeterAccumulatedPulses[2], // LREAL: accum (or flow
rate - depending on meter configuration)
 rOilMeterDensity_API[2], // density API
 rOilMeterCoriolisDriveGain[2]); // coriolis drive gain
(pass zero if N/A)
 BhiLibDualFc.FuUpdateOilMeterLive(3, //meter number
 rOilMeterPressure_psig[3], // pressure
 rOilMeterTemperature_F[3], // temperature
 rOilMeterSandW_percent[3], // S&W percent

Page 10 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

 lrOilMeterAccumulatedPulses[3], // LREAL: accum (or flow
rate - depending on meter configuration)
 rOilMeterDensity_API[3], // density API
 rOilMeterCoriolisDriveGain[3]); // coriolis drive gain
(pass zero if N/A)

 ///
 // YOUR MAIN PROGRAM MUST CALL THE "fbCyclic METHOD ON EACH PASS
 // THIS CALL IS MADE ONCE AND ONLY ONCE PER TASK CYCLE
 // THIS CALL ALLOWS THE LIBRARY TO HAVE CPU CYCLES TO EXECUTE ITS LOGIC
 ///

 fbCyclic();

 ///
 // THE "Get<>" calls are optional
 // THESE CALLS ALLOW YOU TO RETIREVE "LIVE" VALUES FROM THE LIBRARY FOR A SPECIFIC METER
 // WHICH YOU CAN USE IN YOUR PLC PROGRAM
 ///

 // OPTIONAL: get live meter values from the gas meter (meter 1)
 // cGasMeterValues is a struct
 cGasMeterValues := fbCyclic.GetGasMeterValues(1);

 // OPTIONAL: get live meter values from the first oil/liquid meter (meter 2)
 cOilMeterValues[2] := fbCyclic.GetOilMeterValues(2);

 // OPTIONAL: get live meter values from the second oil/liquid meter (meter 3)
 cOilMeterValues[3] := fbCyclic.GetOilMeterValues(3);

 // OPTIONAL: IF YOUR PROGRAM NEEDS TO READ OR MODIFY THE CONFIGURATION
 // OF A METER, YOU CAN DO THIS BY ACCESSING THE
 // PersistentVars.sLib_meters STRUCT ARRAY OF STRUCTS (FOR METERS)
 // ... but you have to use an index of 1 less than what is intuitive..
 // ... (that is: you have to treat the meter array as being zero-indexed)
 // gas meter is at [0], first oil meter is at [1], second oil meter is at [2]
 // EXAMPLES:
 // If you want to read or change the orifice plate size for the GAS meter,
 // read or assign to PersistentVars.sLib_meters[0].plate_coneSize_in
 // If you want to read or change the meter factor for the FIRST oil meter
 // read or assign to PersistentVars.sLib_meters[1].meterFactor
 // If you want to read or change the meter contract hour for the SECOND oil meter
 // read or assign to PersistentVars.sLib_meters[2].oilContractHour

 // OPTIONAL: IF YOUR PROGRAM NEEDS TO <<<READ>> THE CONFIGURATION OF THE GAS STATION
 // (where gas quality, standard conditions, and contract hour are stored)
 // read the PersistentVars.sLib_stations ARRAY OF STRUCTS (<<< at index zero>>>)
 // EXAMPLE:
 // If you want to READ the Methane Percent for the GAS meter,
 // read PersistentVars.sLib_stations[0].Methane_pcnt

 // OPTIONAL: IF YOUR PROGRAM NEEDS TO <<<WRITE>> THE CONFIGURATION OF THE GAS STATION
 // (where gas quality, standard conditions, and contract hour are stored),
 // THE APPROACH DEPENDS ON WHAT YOU WANT TO CHANGE. FOR GAS QUALITY INFO, A SPECIAL
 // PROCEDURE MUST BE FOLLOWED. FOR OTHER INFO, YOU CAN JUST ASSIGN A VALUE.
 // EXAMPLE:
 // If you want to WRITE the gas meter atmospheric pressure,
 // simply assign a value to PersistentVars.sLib_stations[0].atmosphericPressure_psia
 //
 // but if you want to WRITE <<gas quality info>>,
 // you must use the GetGasQuality method to populate a struct containing all gas quality info
 // then you modify the struct
 // then you pass the modified struct to the SetGasQuality method
 // EXAMPLE:
 // declare a variable of the proper type:
 // gasQualityInfo : UIGasQuality;
 // call the "get" (using a zero-indexed meter value of zero for the first gas meter):
 // ex: g_bOperationSuccess := fbCyclic.GetGasQuality(0,ADR(gasQualityInfo));

Page 11 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

 // modify the struct:
 // ex: gasQualityInfo.Methane_pcnt := 27.6;
 // call the "set"(using a zero-indexed meter value of zero for the first gas meter):
 // ex: g_bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(gasQualityInfo));
 // Note: when calling SetGasQuality, you are responsible for ensuring that total composition =
100.0%
 // If the gas composition does not toal 100% or the heating value is < 500,
 // the operation will fail and no changes will be made in the library

 //example code below...
 IF (g_bGetQuality) THEN
 g_bOperationSuccess := fbCyclic.GetGasQuality(0,ADR(g_gasQualityInfo));
 g_bGetQuality := FALSE;
 END_IF

 // make changes to the gasQualityInfo struct on the visualization

 IF (g_bSetQuality) THEN
 g_bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(g_gasQualityInfo));
 g_bSetQuality := FALSE;
 END_IF
 // end example code for get quality, set quality

//!!! DO NOT ATTEMPT TO WRITE DIRECTLY TO THE PersistentVars.sLib_stations ARRAY OF STRUCTS !!!!
 // IF YOU DO WRITE TO THIS STRUCT, YOUR VALUES WILL BE OVER-WRITTEN BY THE LIBRARY
 //
 // TO CHANGE THE GAS STATION INFO, USE THE DEDICATED FUNCTIONS:

ELSE
 // one-time initialization activities

 ///
 // THE HOST PROGRAM !!! MUST !!! CALL AGA8_SetupGERG AND FuInitialize BEFORE CALLING
 // ANY OTHER FUNCTIONS OR METHODS IN THE LIBRARY
 ///

 // Intitialize variables for gas property calculations
 BhiLibDualFC.AGA8_SetupGERG();

 // pass in pointers to persistent memory areas that will be used by the library
 // the library does not allocate its own persistent memory. Your host program
 // must allocate the persistent memory and then alloe the library to utilize that memory

 BhiLibDualFC.FuInitialize(ADR(PersistentVars.sLib_stations),
 ADR(PersistentVars.sLib_meters),
 ADR(PersistentVars.sLib_cfxProductCode),
 ptr_bhiLibMemArea,
 SIZEOF(PersistentVars.bhiLibMemArea));

 xIsInitialized := TRUE; // set the flag so the execution does not go into this branch again

 // the next two lines are initializations of sample code variables. Not required in your program
 g_accumIncr := 0.00417; //1.0/100.0;
 lrSimulatedOilMeterAccum := 0.0;

END_IF;

Link Program Visualizations to Library Visualizations
The library includes a number of visualizations for interacting with the flow computer
functions. The library visualizations can all be accessed from BhiLibDualFC.visFcDualMain.

Page 12 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

The screen capture below shows an example of a simple visualization containing a single
button linking to the flow computer menu Visu.

Adjust e!COCKPIT project Task Interval
The library must be called by your program by a task with execution interval of 50 msec.

.

Page 13 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Licensing
The BhiLibDualFc library utilizes runtime licensing. Each PLC upon which it runs must have a
license. Licenses ae obtained from Beyond HMI, Inc.

Trial Mode
Upon startup, the library will run in trial mode for approximately 4 days. While in trial mode, the
library is fully functional. After the 4 day period passes – and if no license is installed - the
library will stop calculating flow.

If the PLC program is stopped and restarted, the 4 day trail period begins again. Therefore, PLC
program developers should be able to develop and test programs without needing a license for
their development PLCs.

Steps to Obtain a Runtime License
To fully license the BhiLibDualFc library on a PLC, the following steps must be executed:

 Include library features in a PLC program (reference other instructions for PLC program
developers within in this document)

 Install the PLC program on the target PLC specimen
 Open the library’s Admin screen and capture the Site Code
 Transmit the site code to Beyond HMI, Inc. and provide payment information

o Please use info@beyond-hmi.com to initiate contact with us.
 Wait for Beyond HMI, Inc. to return a license file
 Install the license file in the PLC’s /home/user/ directory
 Open the library’s Admin screen and confirm that the license check result is green

Licenses are perpetual. No maintenance fee is required. Licenses are keyed to a site code and
are not portable between PLCs. Please contact Beyond HMI if you need to move a license to
another PLC.

Page 14 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Modifying your PLC program without corrupting library
data

Your PLC program will inevitably need to be modified – possibly after physical flow has already
been accumulated by the flow computer library. Certain changes to your PLC program (adding
persistent variables, for example) can cause data in the library’s memory to be cleared or
corrupted. Beyond HMI has developed tools to support changing your PLC program without
losing accumulated volume in the BHI library. The following section describes the procedure
you should follow to maintain the integrity of your flow data while making PLC programming
changes:

Note: The following steps must be executed in order. Please read and study the
entire procedure list before beginning PLC program maintenance.

Stop physical flow

In order to prevent loss of accumulated flow, all processes for all meters must be shut-in
to prevent flow while the PLC program is being maintained.

Failure to follow this step may result in lost flow accumulation.

Save the library configuration to file

Using Admin features, save the configuration to file. Make note of the file name you use
when saving.

Save a maintenance file

Check the Save Maintenance File checkbox on the Advanced Admin screen. Wait for the
checkbox to be unchecked. This indicates that a maintenance file has been saved to the
PLC file system.

Perform PLC program maintenance

At this point, you are free to make changes to the PLC program and load those changes
onto the PLC.

Restore Library configuration

Using Admin features, load the configuration file that you previously saved.

Force Maintenance Recovery

Check the Force Maintenance Recovery checkbox on the Advanced Admin screen. Wait
for the checkbox to be unchecked. This indicates that meter accumulators have been
recovered from the maintenance file.

Resume physical flow

Page 15 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

At this point, process flow can be resumed without loss of accumulated volume.

Page 16 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

How your program can interact with the Library
In addition to the requirements of initializing the library and passing live meter readings to the
library, your program code can interact with the BhiLibDualFc library to:

 Read current values of calculated parameters for each meter
 Read meter and station configuration information
 Writing meter and station configuration Information

The following sections provide further detail about how to execute these interactions from your
program code.

Reading Current Calculated Values from your program
Reading Gas Meter Values
Use the fbCyclic.GetGasMeterValues method to read current values from the meter.

This method takes a single input parameter:

 meter number (always 1 for the gas meter in the BhiLibDualFc library)

The method returns a structure of type GasFcCurrentGasMeterValues . This structure includes
members which can be read to determine current values from the calculations, such a mass,
volume and energy flow rates, and mass volume and energy accumulations for hourly, daily, and
monthly periods.

Reading Oil Meter Values
Use the fbCyclic.GetOilMeterValues method to read current values from the meter.

This method takes a single input parameter:

 meter number (use 2 for the first oil/liquid meter and 3 for the second oil/liquid meter)

The method returns a structure of type DualFcCurrentOilMeterValues. This structure includes
members which can be read to determine current values from the calculations, such a gross/net
volume, etc. flow rates and accumulations for hourly, daily, and monthly periods.

Reading Meter Configuration Values from your program
Your program can directly read meter configuration parameters (such as gas meter orifice plate
size or oil meter meter factor). You do this by reading from the members of the sLib_meters
array that you declared in persistent memory.

You must use an index of 1 less than what is intuitive. That is: you have to treat the meter array
as being zero-indexed. The gas meter is at [0], the first oil meter is at [1], the second oil meter is
at [2].

The following examples illustrate the approach…

 If you want to read the orifice plate size for the GAS meter, read
PersistentVars.sLib_meters[0].plate_coneSize_in.

Page 17 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

 If you want to read the meter factor for the FIRST oil meter, read
PersistentVars.sLib_meters[1].meterFactor.

 If you want to read the meter contract hour for the SECOND oil meter, read
PersistentVars.sLib_meters[2].oilContractHour

Reading Station Configuration Values from your program
Your program can directly read station configuration parameters (such as gas meter contract
hour or gas quality information). You do this by reading from the members of the sLib_stations
array that you declared in persistent memory.

In the BhiLibDualFc library, there is only one gas meter station, and it is accessed at index zero.
For example, If you want to READ the Methane Percent for the GAS meter, read
PersistentVars.sLib_stations[0].Methane_pcnt.

Writing Meter Configuration Values from your program
Your program can directly assign values to meter configuration parameters (such as gas meter
orifice plate size or oil meter meter factor). You do this by reading from or assigning to the
members of the sLib_meters array that you declared in persistent memory.

You must use an index of 1 less than what is intuitive. That is: you have to treat the meter array
as being zero-indexed. The gas meter is at [0], the first oil meter is at [1], the second oil meter is
at [2].

The following examples illustrate the approach…

 If you want to modify the orifice plate size for the GAS meter, assign the new value to
PersistentVars.sLib_meters[0].plate_coneSize_in.

 If you want to modify the meter factor for the FIRST oil meter, assign the new value to
PersistentVars.sLib_meters[1].meterFactor.

 If you want to modify the meter contract hour for the SECOND oil meter, assign the new
value to PersistentVars.sLib_meters[2].oilContractHour

Writing Station Configuration Values from your program
If your program needs to modify the configuration of the gas station (where gas quality, standard
conditions, and contract hour are stored), the approach depends upon what you need to modify.
For gas quality information, a special procedure must be followed. For other station parameters,
you can just assign values to the parameter. For example, If you want to modify the gas station
atmospheric pressure, simply assign a value to
PersistentVars.sLib_stations[0].atmosphericPressure_psia

But if you want to modify gas quality information (gas composition, heating value, etc.) you must
use the GetGasQuality method to populate a struct containing all gas quality info. Then you
modify the struct. Finally, you pass the modified struct to the SetGasQuality method

For example:

Page 18 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

You declare a variable of the proper type:

Example code: gasQualityInfo : UIGasQuality;

Then you call the "get" (using a zero-indexed station number value of zero for the first gas
station):

Example code: g_bOperationSuccess := fbCyclic.GetGasQuality(0,ADR(gasQualityInfo));

Then you modify the struct:

Example code: gasQualityInfo.Methane_pcnt := 27.6;

Finally, you call the "set" (using a zero-indexed station number value of zero for the first gas
station):

Example code: g_bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(gasQualityInfo));

Note: When calling SetGasQuality, you are responsible for ensuring that total
composition = 100.0%. If the gas composition does not total 100% or the heating
value is < 500, the operation will fail and no changes will be made in the library.

