Beyond
Dual Flow Computer Library

Developer’s Guide: using BhiLibDualFc in an e!COCKPIT
project

The following sections provide detailed instructions for creating a simple e!/COCKPIT program
which uses the dual flow computer library.

Page 10f18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

Contents
Developer’s Guide: using BhiLibDualFc in an e!COCKPIT DIOJECT........cccourururiiurerereeieireneeeeeseseesieeseseseaeenas 1
Obtain the HDTary f11e ... es 3
Install the I1brary 1n @ICOCKPIT ...ttt ses bbb nnnes 3
Add the LiBrary t0 YOUT PIOJECT ...ttt s e 4
Create persistent memory structures which will be used by the library..........cocooiiiiiniiies 5
Add necessary variables to the Program which calls the library function block............ccccceuneeee. 6
Add supporting Code t0 the PrOGTam. ..ot 8
Link Program Visualizations to Library Visualizationscccoeeeeeeiccececeeecceeeeeeeeeeeeeeee e 11
Adjust e!COCKPIT project Task INTEIVAL...........cooiieiieeeeee ettt 12
I 1<) 0 =3 1 Lo OO 13
1 001 (o T -SSP 13
Steps to Obtain @ RUNTIME LICEIISE..........c.coovieeeeeeeeececectcte ettt senssas e seaes 13
Modifying your PLC program without corrupting library data...........ccccceeveeeeeieeceeceecccccceee e, 14
How your program can interact with the LIDIary ..., 16
Reading Current Calculated Values from youUI PIOgIam.........cccoriiririnincinirineeieineee s seeens 16
Reading Gas Meter VAlUES ...ttt 16
Reading O1l Meter VAlUeS...... ...ttt 16
Reading Meter Configuration Values from your program............ccoceernirinnnecseneseeseseeeesesenens 16
Reading Station Configuration Values from your program.............cccceeeennicninenesssenee e 17
Writing Meter Configuration Values from your Program...........ccrnirnnenscnenesesesesee e 17
Writing Station Configuration Values from your Program ... 17

Page 2 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

Obtain the library file
Request the BhiLibDualFc compiled-library from info@beyond-hmi.com. There is one version of

the library. It supports a single (one) gas meter run and a single (one) liquid meter run. The
meter run can be either an allocation meter or a custody-transfer meter.

Install the library in e!COCKPIT

e Open any project in e!COCKPIT
e Navigate to a Library Manager

% Add library < Delete library | °5F Properties Details | 5] Placeholders mLihrary repository

Mame Mamespace Effective version

- +fi)
-
S|
)
s

PRI = O O == I =

e Select Library Repository

rs m Library repﬁtor}t
g
MNamespace Effective version

@) Library Repository 4

Location: | System i Edit Locations. ..
{C'ProgramDataWAGO Software\e!COCKPIT\CODESYS\Managed Libraries)

Installed libraries: Install,..

Company: | (Al companies) gt Liriimertll

Expaorts..

AGO FunctionalView Find...
AGO Internal
= WAGN | avarifiew
Group by category Denk

T S S S S At AP S S

Library Profiles... Cloze

e Select Install..
e Navigate to the downloaded library file and click on Open.
e Verify that the library was installed in the Miscellaneous section

Page 30f18 DFC_DG_2020_02_26 info@beyond-HMI.com

BeyondHM!

i) Library Repository X
Location: System = Edit Locations... |
{C:\ProgramData\WAGD Software\e! COCKPIT\CODESYS \Managed Libraries)
Installed libraries: Install...
Company: | i vl
Rany:| [l comiciacic o) 2 Lininstzll
~
Export...
-0 BhiLibDualFC i
+ WagoSysModule_75¢ 540
0 WagoSysModule_75¢ 855 IV
% - *E WagoSysTypedefsFieldbus_32Bit
] -+ WagoTypesModule 7o 557 1
+ 2
* Find...
i
L. 2 b Detaiis. ..
Group by category S
Library Profiles... | Cloze

Add the Library to Your Project
e Create a project and designate the Device(s) in the project.
e Navigate to a Library Manager

letworky/Devices it Libran - -
%5 Add library < Delete library | 057 Properties 7= Details | 5] Placeholders mLibr&:}r repository

Namespace

CamDisplayer

ElemMeter

£ System
- +8 System_vi

H--+E System_VisuEle 3.5,

VisuElemsSpecialCentrols

Select Add Library

Page 4 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

i) Add Library X
[Bhil
Library placeholder
Match Library A
>3 BhiLibDualFC, 1.0.0.1
23 BhiUnitsFamily BhiLibDualFC, 1.0.0.1
»1@ BhiLibGasFC_C, 1.0.0.1
23 BhiUnitsFamily BhiLibGasFC_C, 1.0.0.1
|E] FbCydic BhiLibDualFC, 1.0.0.1
| GetGasMeterValues F5C)cic BhiLibDualFC, 1.0.0.1
[GetMeterConfig FHCycic BhiLibDualFC, 1.0.0.1
| GetOilMetervalues FoCycic BhiLibDualFC, 1.0.0.1
|Z] Fulnitialize BhiLibDualFC, 1.0.0.1
|Z] FuUpdateGasMeterLive BhiLibDualFC, 1.0.0.1 ~
(‘ >
Library Repository... OK Cancel

Start typing the library name until the library appears in bold text

Select the Library and select OK.

Create persistent memory structures which will be used by the library

The library needs some of its data structures to persist — even when the PLC program is loaded
or the power to the PLC is cycled. Your program needs to allocated these structures and pass
them to the library.

If one has not already been created, add a Persistent Variables Object to the Project
Navigate the project’s Persistent Variables object

Add the following declarations to the persistent memory area (Copy these lines into the
e!COCKPIT window):

VAR GLOBAL PERSISTENT RETAIN
sLib stations : ARRAY[0..MAX GAS STATIONS - MIN GAS STATION] OF GasFcStation;
sLib meters : ARRAY[0..MAX METERS - MIN METER] OF DualFcMeter;
sLib cfxProductCode : ARRAY[O..MAX METERS - MIN OIL METER] OF STRING(47);

bhiLibMemArea : ARRAY[O0..BHI DUALFCLIB MEM AREA ARRAY MAX VALUE] OF BYTE;

END_ VAR

Page 5 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

BeyondHM!

-
3 Q) ¥ NETWORK FUNCTIONS PROGRAMMING FUNCTIONS 8212.ecp - e!COCKPIT
HOME VIEW NETWORK PROGRAM DEBUG DECLARATIONS
« Foal Start = *Q Online Change @a S Y Reouild [¥x Clean =c=| [E] Output cross references
) S0y 00 Jeesees w -
>4 ®) ®) Sto L 4 |zz22::) 3y Edit Offiine Q (& Generate Code |¥x Clean Al i
Connect Simulate - Prog Muitiple Boot Application E . Compare Compile Search
Application Reset ~ Download Download Download Changes Download applications v
Connection Execute Functions Source Code Search
Program Structure PRI Network/De PersistentVars X [} B ov > I [} Task Configuratio &
5 1
| o Ir 2 AR GLOBAL| PERSISTENT RETAIN
4 (=1 Project Library (POUs) g 3
o) 4 sLib_stations : ARRAY[0..MAX GAS_STATIONS - MIN_GAS_STATION] OF GasFcStation;
{2] GlobarTextList sLib_meters : ARRAY[0..MAX METERS - MIN METER] OF DualFcMeter;
iiil Library Manager € sLib_cfxProductCode : ARRAY[0..MAX METERS - MIN_OIL METER] OF STRING(47):;
g ﬁ Applications " bhilibMemArea : ARRAY([CO..BHI_DUALFCLIB_MEM AREA ARRAY MAX VALUE] OF BYTE:
« %% [Application (PFC200_G2_2ETH_M1 3 D VA

B oewL
iiil Library Manager
¥ O PLc_PRG
» E& Task Configuration
T PersistentVars
» @ Visualization Manager

@ Debug

& PLc_visu

Add necessary variables to the Program which calls the library function block

The following illustrates how the library can be used with a Structured Text Program. The code
is reproduced below the screen capture. The following example code assumes that the PLC_PRG
program will call the library.

Page 6 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

BeyondHM!

E s NETWORK FUNCTIONS ~ PROGRAMMING FUNCTIONS 8212.ecp - e!COCKPIT
HOME VIEW NETWORK PROGRAM DEBUG
o g F W Online Change @S} . ¥ Rebuild [¥x Clean Output cross references | CODESYS V3 PLCopen XML 3 Refactoring
e ® © sop 3 e Q {8 Generate Code [V Ciean Al 2 Mark Declaration E‘j Import % Import L_lA.utoDe(are [Advanced ~
Connect Simulate R Mutpz BoolApph(a!on Compare Compile .
Application Reset + | Download Download Downicad d applications =) Bport [Export To osition
[Connection Execute Functions Source Code Search Import/export Edit
& : 3 5
oo|, : =
4 /751 Project Library (POUs) i I e ool
GlobalTextList s
i Library Manager € / 1111111111111
P iiAppﬁcaﬁons 7 fbCyclic : iLibDualFC.FbCyclic;
ptr_bhilibMemArea : POINTER TO BYTE := ADR(PersistentVars.bhilibMemArea);
PE - 3 Application (PFC200_G2_2ETH_M1 .
Bowv 10
iili Library Manager =)
9 O propre s you are using
» [Task Configuration 4
T Persistentvars 51 (=
€ rGasHecerScamc ressure_psia : /
» & Visualization Manager 17 rGasMeterDifferential Pressure mnzo : REAL,
@PLC_V\SU 1 rGasMeterTemperature_F : REAL; / gas m
15 alues : GasFcC Value:
20 cGasMeterConfig : GasFcCurrentConfig:
23 rOilMeterPressure_psig : ARRAY
24 rOilMeterTemperature F : ARRAY
25 :Oxmecersandw_pe:cenn :
28
23 1rOilMeterAccumulatedPulses :
30 cOilMeterValues : ARRAY([2..3] OF DualFcCurrentOilMeterValues
34 BE DONE - JUST ONCE
42 1rSimulatedOilMeterAccum : LREAL;
43 1rSimulatedOilMeterKnownAccum : LREAL;
44 sendGasDp : REAL;
1€ cycleCount : INT
47 waitCount : INT := 0;
49 END_VAR
[100% [&
L =

VAR
[177077
// THESE VARIABLES ARE REQUIRED FOR INTERFACE TO THE BHI LIBRARY
// AND TO PROVIDE THE LIBRARY WITH PERSISTENT MEMORY TO WORK WITH
L1777 77077 7777707 77
fbCyclic : BhiLibDualFC.FbCyclic;
ptr bhiLibMemArea : POINTER TO BYTE := ADR(PersistentVars.bhiLibMemArea) ;

L1777 7077 7777707 77

// THESE VARIABLES ARE USED IN THE SAMPLE CODE TO PASS VALUES

// BETWEEN THIS HOST PROGRAM AND THE LIBRARY

// they may not ALL be necessary - depending on how many of the meters you are using

L1777 7077 7777707777777 77

(*** value determined by the host via I/O or MODBUS & passed to library ***)

rGasMeterStaticPressure psia : REAL; // gas meter "live" static pressure (as REAL)

rGasMeterDifferentialPressure inH20 : REAL; // gas meter "live" differential pressure (as REAL)

rGasMeterTemperature F : REAL; // gas meter static "live" temeprature (as REAL)

cGasMeterValues : GasFcCurrentGasMeterValues; // struct used to retrieve "live" values
from the library

cGasMeterConfig : GasFcCurrentConfig; // struct used to retrieve configuration values from the
library

// the following are arrays because there are two liquid meters: lig meter 2 and liquid meter 2

rOilMeterPressure psig : ARRAY[2..3] OF REAL; // oil meter "live" flowing fluid pressure
at meter (as REAL)
rOilMeterTemperature F : ARRAY[2..3] OF REAL; // 0il meter "live" flowing fluid

temperature at meter (as REAL)

Page 7 0f18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

rOilMeterSandW percent : ARRAY[2..3] OF REAL; // o0il meter S&W percent (as REAL)

rOilMeterDensity API : ARRAY[2..3] OF REAL; // oil meter "live" flowing density at meter
(as REAL)

// NOTE: drive gain is optional. Not required for calculations

rOilMeterCoriolisDriveGain : ARRAY[2..3] OF REAL; // o0il meter "live" meter drive gain value
(as REAL)

lrOilMeterAccumulatedPulses : ARRAY[2..3] OF LREAL; // oil meter "live" meter pulse accumualtion
value (as LREAL)

cOilMeterValues : ARRAY[2..3] OF DualFcCurrentOilMeterValues; // struct used to retrieve "live"
values from the library

L177777777 777707707 77777777777777777707777777777777777777777777777777777

// THIS VARIABLE IS USED TO CONTROL THE FLOW OF THE MAIN PROGRAM

// ON FIRST TASK CYCLE, CERTAIN INITIALIZATION/HOUSEKEEPING TASKS MUST BE DONE - JUST ONCE
[T 777

xIsInitialized : BOOL := FALSE;

LI1LTT700007 7700077777077 770777770777 70 7777777 007777777777777777777
// THESE VARIABLES ARE USED BY THE SAMPLE PROGRAM TO SIMULATE FLOW

L1777 7077 7777707777777 77
lrSimulatedOilMeterAccum : LREAL;

lrSimulatedOilMeterKnownAccum : LREAL;

sendGasDp : REAL;

cycleCount : INT := O;
waitCount : INT := O;

END VAR

Add supporting Code to the Program

The following illustrates how the library can be used with a Structured Text Program. The code
is reproduced below the screen capture.

IF xIsInitialized THEN

N NNy
// YOUR CODE TO ACCESS I/0 OR COMMUNICATIONS NETWORK TO GET "LIVE" METER VALUES
LILTITT0077 0070707777070 77 7770770707777 77 777777777 77777777777777777777177777777771777

// the example below uses values entered on the main visualization

IF (waitCount > 35) THEN
// update the value that we send to the library
// simulates scanning of a meter with Modbus every 35/20ths of a second
lrSimulatedOilMeterKnownAccum := lrSimulatedOilMeterAccum;
waitCount := 0;
ELSE
waitCount := waitCount + 1;
END IF;

cycleCount := cycleCount + 1;

IF cycleCount > 1000 THEN
cycleCount := 0;

END IF;

// this code uses the input values from the visualization screen to populate the variables

// which will be used to pass live values to the library

// there is a little twist here because this sample program uses a checkbox on the visualization
// to either have flow or to stop flow to all meters at the same time

Page 8 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond/

rGasMeterStaticPressure psia := g gasSp;

IF (g_bFlowing) THEN

rGasMeterDifferentialPressure inH20 := g gasDp;
ELSE

rGasMeterDifferentialPressure inH20 := 0.0; // simulate no DP
END_IF;
rGasMeterTemperature F := g gasT;

IF (g bFlowing) THEN
// simulation of a moving accumulated quantity
// this sample program uses the same accumulator for both oil meters

lrSimulatedOilMeterAccum := lrSimulatedOilMeterAccum + g accumlncr;
ELSE

// and don't increment the totalizer
END IF;
rOilMeterPressure psig([2] := g oilSp[2];
rOilMeterTemperature F[2] := g oilT[2];
rOilMeterSandW percent[2] := g oilSwPercent([2];
rOilMeterDensity API[2] := g oilDensity API[2];
rOilMeterCoriolisDriveGain[2]:= g oilDriveGain[2];
lrOilMeterAccumulatedPulses[2] := lrSimulatedOilMeterAccum;
rOilMeterPressure psig[3] := g 0ilSp[3];
rOilMeterTemperature F[3] := g oilT[3];
rOilMeterSandW percent[3] := g oilSwPercent([3];
rOilMeterDensity API[3] := g oilDensity API[3];
rOilMeterCoriolisDriveGain[3]:= g oilDriveGain[3];
lrOilMeterAccumulatedPulses[3] := lrSimulatedOilMeterAccum;

////// end of example code used to simulate inputs //////

L1707 7770077777 077
// YOUR MAIN PROGRAM MUST CALL THE "...Update<>MeterLive" METHODS ON EACH PASS

// FOR EACH METER THAT YOU ARE USING (up to 1 gas meter and up to 2 oil/liquid meters)
// USING THE LATEST-AVAILABLE LIVE METER VALUES

L1770 7777077 777077

BhiLibDualFc.FuUpdateGasMeterLive (1, // gas meter number is 1

rGasMeterStaticPressure psia, // "live" value - most recently
acquired value

rGasMeterTemperature F, // "live" value - most recently acquired
value

rGasMeterDifferentialPressure inH20, // "live" value - most
recently acquired value

0); // pulse count is always zero for AGA-3 meters. This is for
future functionality

BhiLibDualFc.FuUpdateOilMeterLive (2, //meter number
rOilMeterPressure psig([2], // pressure
rOilMeterTemperature F[2], // temperature
rOilMeterSandW percent[2], // S&W percent
lrOilMeterAccumulatedPulses([2], // LREAL: accum (or flow
rate - depending on meter configuration)
rOilMeterDensity API[2], // density API
rOilMeterCoriolisDriveGain[2]); // coriolis drive gain
(pass zero if N/A)
BhiLibDualFc.FuUpdateOilMeterLive (3, //meter number
rOilMeterPressure psig([3], // pressure
rOilMeterTemperature F[3], // temperature
rOilMeterSandW percent[3], // S&W percent

Page 9 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond//

lrOilMeterAccumulatedPulses[3], // LREAL: accum (or flow
rate - depending on meter configuration)

rOilMeterDensity API[3], // density API

rOilMeterCoriolisDriveGain([3]); // coriolis drive gain
(pass zero if N/A)

L1777 7077777707777 777777777777 777
// YOUR MAIN PROGRAM MUST CALL THE "fbCyclic METHOD ON EACH PASS

// THIS CALL IS MADE ONCE AND ONLY ONCE PER TASK CYCLE

// THIS CALL ALLOWS THE LIBRARY TO HAVE CPU CYCLES TO EXECUTE ITS LOGIC

L1777 7077777707777 777777777777 777

fbCyclic () ;

L1707 7770077 777077777 777
// THE "Get<>" calls are optional

// THESE CALLS ALLOW YOU TO RETIREVE "LIVE" VALUES FROM THE LIBRARY FOR A SPECIFIC METER
// WHICH YOU CAN USE IN YOUR PLC PROGRAM

L1770 7770077

// OPTIONAL: get live meter values from the gas meter (meter 1)
// cGasMeterValues is a struct
cGasMeterValues := fbCyclic.GetGasMeterValues (1) ;

// OPTIONAL: get live meter values from the first oil/liquid meter (meter 2)
cOilMeterValues[2] := fbCyclic.GetOilMeterValues (2);

// OPTIONAL: get live meter values from the second oil/liquid meter (meter 3)
cOilMeterValues[3] := fbCyclic.GetOilMeterValues (3);

// OPTIONAL: IF YOUR PROGRAM NEEDS TO READ OR MODIFY THE CONFIGURATION

// OF A METER, YOU CAN DO THIS BY ACCESSING THE

// PersistentVars.sLib meters STRUCT ARRAY OF STRUCTS (FOR METERS)

// ... but you have to use an index of 1 less than what is intuitive..

// ... (that is: you have to treat the meter array as being zero-indexed)

// gas meter is at [0], first oil meter is at [1], second oil meter is at [2]

// EXAMPLES:

// If you want to read or change the orifice plate size for the GAS meter,

// read or assign to PersistentVars.sLib _meters[0].plate_coneSize_ in
// If you want to read or change the meter factor for the FIRST oil meter

// read or assign to PersistentVars.sLib meters[l].meterFactor

// If you want to read or change the meter contract hour for the SECOND oil meter
// read or assign to PersistentVars.sLib meters[2].oilContractHour

// OPTIONAL: IF YOUR PROGRAM NEEDS TO <<<READ>> THE CONFIGURATION OF THE GAS STATION
// (where gas quality, standard conditions, and contract hour are stored)

// read the PersistentVars.sLib stations ARRAY OF STRUCTS (<<< at index zero>>>)

// EXAMPLE:

// If you want to READ the Methane Percent for the GAS meter,

// read PersistentVars.sLib stations[0].Methane pcnt

// OPTIONAL: IF YOUR PROGRAM NEEDS TO <<<WRITE>> THE CONFIGURATION OF THE GAS STATION
// (where gas quality, standard conditions, and contract hour are stored),

// THE APPROACH DEPENDS ON WHAT YOU WANT TO CHANGE. FOR GAS QUALITY INFO, A SPECIAL
// PROCEDURE MUST BE FOLLOWED. FOR OTHER INFO, YOU CAN JUST ASSIGN A VALUE.

// EXAMPLE:

// 1If you want to WRITE the gas meter atmospheric pressure,

// simply assign a value to PersistentVars.sLib stations[0].atmosphericPressure psia
//

// but if you want to WRITE <<gas quality info>>,

// you must use the GetGasQuality method to populate a struct containing all gas quality info
// then you modify the struct

// then you pass the modified struct to the SetGasQuality method

// EXAMPLE:

// declare a variable of the proper type:

// gasQualityInfo : UIGasQuality;

// call the "get" (using a zero-indexed meter value of zero for the first gas meter):

// ex: g bOperationSuccess := fbCyclic.GetGasQuality(0,ADR(gasQualityInfo));

Page 10 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

// modify the struct:

// ex: gasQualityInfo.Methane pcnt := 27.6;
// call the "set" (using a zero-indexed meter value of zero for the first gas meter):
// ex: g bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(gasQualityInfo));
// Note: when calling SetGasQuality, you are responsible for ensuring that total composition =
100.0%
// If the gas composition does not toal 100% or the heating value is < 500,
// the operation will fail and no changes will be made in the library
//example code below...
IF (g_bGetQuality) THEN
g _bOperationSuccess := fbCyclic.GetGasQuality (0,ADR(g _gasQualityInfo));
g bGetQuality := FALSE;
END IF
// make changes to the gasQualityInfo struct on the visualization
IF (g_bSetQuality) THEN
g_bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(g gasQualityInfo));
g bSetQuality := FALSE;
END_IF
// end example code for get quality, set quality
//1 1! DO NOT ATTEMPT TO WRITE DIRECTLY TO THE PersistentVars.sLibistations ARRAY OF STRUCTS !!!!
// IF YOU DO WRITE TO THIS STRUCT, YOUR VALUES WILL BE OVER-WRITTEN BY THE LIBRARY
//
// TO CHANGE THE GAS STATION INFO, USE THE DEDICATED FUNCTIONS:
ELSE
// one-time initialization activities
LI 7777 7777777777777777 77777777777 7777777777777777777777777777777777
// THE HOST PROGRAM !!! MUST !!! CALL AGA87SetquERG AND FuInitialize BEFORE CALLING
// ANY OTHER FUNCTIONS OR METHODS IN THE LIBRARY
LI 7777777777777 77777777777 7777777777777777777777777777777777
// Intitialize variables for gas property calculations
BhiLibDualFC.AGA8 SetupGERG() ;
// pass in pointers to persistent memory areas that will be used by the library
// the library does not allocate its own persistent memory. Your host program
// must allocate the persistent memory and then alloe the library to utilize that memory
BhiLibDualFC.Fulnitialize (ADR(PersistentVars.sLib stations),
ADR (PersistentVars.sLib meters),
ADR (PersistentVars.sLib cfxProductCode),
ptr bhiLibMemArea,
SIZEOF (PersistentVars.bhiLibMemArea)) ;
xIsInitialized := TRUE; // set the flag so the execution does not go into this branch again
// the next two lines are initializations of sample code variables. Not required in your program
g accumIncr := 0.00417; //1.0/100.0;
lrSimulatedOilMeterAccum := 0.0;
END IF;

Link Program Visualizations to Library Visualizations

The library includes a number of visualizations for interacting with the flow computer
functions. The library visualizations can all be accessed from BhiLibDualFC.visFcDualMain.

Page 11 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

BeyondHM!

The screen capture below shows an example of a simple visualization containing a single
button linking to the flow computer menu Visu.

@

1| var_IN_OUT

END_VAR

Interface Editor (2] Hotkeys Configuration T Elementlist

Y Filter ~

»3 Sort by ~ %lSort order v Advanced

Property
Element name
Type of element
TextID
+ Position
100% 18| Coom
A | Use gradient color
Gradient setting
Bitmap info
Texts
Text properties
Absolute movement
Relative movement
Text variables
Dynamic texts
Font variables
Colorvariables
State variables
Button state variable
Bitmap ID variable
Inputconfiguration
OnDialogClosed
= OnMouseClick

o Flow C@mnputer [}

I F o+ o+ o+ o+ o+ o+ o+ o+

OnMouseDown
OnMouseEnter
OnMouseleave
OnMouseMove
OnMouseUp

+ Tap

Toggle

Hotkey

+

+

Change show...

Value
GenElemInst_3
Button

678

] linear, Black, White

Configure...
Configure...
BhiLibDualFC.visFdDualMain
Configure...
Configure...
Configure...
Configure...
Configure...

Adjust e!COCKPIT project Task Interval

The library must be called by your program by a task with execution interval of 50 msec.

4 7% Project Library (POUs)
GlobalTextList
jlii Library Manager
4 W Appiications
4 ¥ [| Application (PFC200_2ETH_RS_XT|
Bev
jii Library Manager
9 C rc_PrRE
4 [Task Configuration
[F1PLC_Task (1)
[F1 VISU_TASK (1)
T Persistentvars
+ {ij Visualization Manager
EPLC_visu

Configuration

Priority (1.15):

Type

Watchdog
[JEnable

| Interval (e.g. t2200ms): [0 1

[15

Time (e.g. ££200ms):

Sensitivity:

ms >

o Add Call 3 Remove Call [Change Call | & Movelp & Move Down | = Open POU
POU Comment
) pic_PrG

Page 12 0f 18

DFC_DG_2020_02_26

info@beyond-HMI.com

Beyond

Licensing
The BhiLibDualFc library utilizes runtime licensing. Each PLC upon which it runs must have a
license. Licenses ae obtained from Beyond HM], Inc.

Trial Mode

Upon startup, the library will run in trial mode for approximately 4 days. While in trial mode, the
library is fully functional. After the 4 day period passes — and if no license is installed - the
library will stop calculating flow.

If the PLC program is stopped and restarted, the 4 day trail period begins again. Therefore, PLC
program developers should be able to develop and test programs without needing a license for
their development PLCs.

Steps to Obtain a Runtime License
To fully license the BhiLibDualFc library on a PLC, the following steps must be executed:

e Include library features in a PLC program (reference other instructions for PLC program
developers within in this documen)
¢ Install the PLC program on the target PLC specimen
e Open the library’'s Admin screen and capture the Site Code
e Transmit the site code to Beyond HMI, Inc. and provide payment information
o Please use info@beyond-hmi.com to initiate contact with us.
e Wait for Beyond HMI, Inc. to return a license file
e Install the license file in the PLC's /home/user/ directory
¢ Open the library’s Admin screen and confirm that the license check result is green

Licenses are perpetual. No maintenance fee is required. Licenses are keyed to a site code and
are not portable between PLCs. Please contact Beyond HMI if you need to move a license to
another PLC.

Page 13 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

Modifying your PLC program without corrupting library
data

Your PLC program will inevitably need to be modified — possibly after physical flow has already
been accumulated by the flow computer library. Certain changes to your PLC program (adding
persistent variables, for example) can cause data in the library’s memory to be cleared or
corrupted. Beyond HMI has developed tools to support changing your PLC program without
losing accumulated volume in the BHI library. The following section describes the procedure
you should follow to maintain the integrity of your flow data while making PLC programming
changes:

Note: The following steps must be executed in order. Please read and study the
entire procedure list before beginning PLC program maintenance.

Stop physical flow

In order to prevent loss of accumulated flow, all processes for all meters must be shut-in
to prevent flow while the PLC program is being maintained.

Failure to follow this step may result in lost flow accumulation.
Save the library configuration to file

Using Admin features, save the configuration to file. Make note of the file name you use
when saving.

Save a maintenance file

Check the Save Maintenance File checkbox on the Advanced Admin screen. Wait for the
checkbox to be unchecked. This indicates that a maintenance file has been saved to the
PLC file system.

Perform PLC program maintenance

At this point, you are free to make changes to the PLC program and load those changes
onto the PLC.

Restore Library configuration
Using Admin features, load the configuration file that you previously saved.
Force Maintenance Recovery

Check the Force Maintenance Recovery checkbox on the Advanced Admin screen. Wait
for the checkbox to be unchecked. This indicates that meter accumulators have been
recovered from the maintenance file.

Resume physical flow

Page 14 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

At this point, process flow can be resumed without loss of accumulated volume.

Page 15 0f 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

How your program can interact with the Library

In addition to the requirements of initializing the library and passing live meter readings to the
library, your program code can interact with the BhiLibDualFc library to:

e Read current values of calculated parameters for each meter
e Read meter and station configuration information
e Writing meter and station configuration Information

The following sections provide further detail about how to execute these interactions from your
program code.

Reading Current Calculated Values from your program

Reading Gas Meter Values
Use the bCyclic.GetGasMeterValues method to read current values from the meter.

This method takes a single input parameter:
e meter number (always 1 for the gas meter in the BhiLibDualFc library)

The method returns a structure of type GasFcCurrentGasMeterValues. This structure includes
members which can be read to determine current values from the calculations, such a mass,
volume and energy flow rates, and mass volume and energy accumulations for hourly, daily, and
monthly periods.

Reading Oil Meter Values
Use the bCyclic.GetOilMeterValues method to read current values from the meter.

This method takes a single input parameter:
e meter number (use 2 for the first oil/liquid meter and 3 for the second oil/liquid meter)

The method returns a structure of type DualFcCurrentOilMeterValues. This structure includes
members which can be read to determine current values from the calculations, such a gross/net
volume, etc. flow rates and accumulations for hourly, daily, and monthly periods.

Reading Meter Configuration Values from your program

Your program can directly read meter configuration parameters (such as gas meter orifice plate
size or oil meter meter factor). You do this by reading from the members of the sLib_meters
array that you declared in persistent memory.

You must use an index of 1 less than what is intuitive. That is: you have to treat the meter array
as being zero-indexed. The gas meter is at [0], the first oil meter is at [1], the second oil meter is
at [2].

The following examples illustrate the approach...
e If you want to read the orifice plate size for the GAS meter, read

PersistentVars.sLib_meters[0].plate_coneSize_in.

Page 16 of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

e If you want to read the meter factor for the FIRST oil meter, read
PersistentVars.sLib_meters[l].meterFactor.

e If you want to read the meter contract hour for the SECOND oil meter, read
PersistentVars.sLib_meters[2].oilContractHour

Reading Station Configuration Values from your program

Your program can directly read station configuration parameters (such as gas meter contract
hour or gas quality information). You do this by reading from the members of the sLib_stations
array that you declared in persistent memory.

In the BhiLibDualFc library, there is only one gas meter station, and it is accessed at index zero.
For example, If you want to READ the Methane Percent for the GAS meter, read
PersistentVars.sLib_stations[0].Methane_pcnt.

Writing Meter Configuration Values from your program

Your program can directly assign values to meter configuration parameters (such as gas meter
orifice plate size or oil meter meter factor). You do this by reading from or assigning to the
members of the sLib_meters array that you declared in persistent memory.

You must use an index of 1less than what is intuitive. That is: you have to treat the meter array
as being zero-indexed. The gas meter is at [0], the first oil meter is at [1], the second oil meter is
at [2].

The following examples illustrate the approach...

e If you want to modify the orifice plate size for the GAS meter, assign the new value to
PersistentVars.sLib_meters[0].plate_coneSize_in.

e If you want to modify the meter factor for the FIRST oil meter, assign the new value to
PersistentVars.sLib_meters[l].meterFactor.

e If you want to modify the meter contract hour for the SECOND oil meter, assign the new
value to PersistentVars.sLib_meters[2].oilContractHour

Writing Station Configuration Values from your program

If your program needs to modify the configuration of the gas station (where gas quality, standard
conditions, and contract hour are stored), the approach depends upon what you need to modify.
For gas quality information, a special procedure must be followed. For other station parameters,
you can just assign values to the parameter. For example, If you want to modify the gas station
atmospheric pressure, simply assign a value to
PersistentVars.sLib_stations[0].atmosphericPressure_psia

But if you want to modify gas quality information (gas composition, heating value, etc.) you must
use the GetGasQuality method to populate a struct containing all gas quality info. Then you
modify the struct. Finally, you pass the modified struct to the SetGasQuality method

For example:

Page 17 0of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

Beyond

You declare a variable of the proper type:
Example code: gasQualityInfo : UIGasQuality;

Then you call the "get" (using a zero-indexed station number value of zero for the first gas
station):

Example code: g_bOperationSuccess := fbCyclic.GetGasQuality(0,ADR(gasQualityInfo));
Then you modify the struct:
Example code: gasQualityInfo.Methane_pcnt := 27.6;

Finally, you call the "set" (using a zero-indexed station number value of zero for the first gas
station):

Example code: g_bOperationSuccess := fbCyclic.SetGasQuality(0,ADR(gasQualityInfo));

Note: When calling SetGasQuality, you are responsible for ensuring that total
composition = 100.0%. If the gas composition does not total 100% or the heating
value is < 500, the operation will fail and no changes will be made in the library.

Page 18 0of 18 DFC_DG_2020_02_26 info@beyond-HMI.com

