

Page 1 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Tank Supervisor Library

Developer’s Guide: using BhiLibTank in an e!COCKPIT
project
The following sections provide detailed instructions for creating a simple e!COCKPIT program
which uses the tank supervisor library.

Page 2 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Contents
Developer’s Guide: using BhiLibTank in an e!COCKPIT project .. 1

Obtain the library file .. 3

Install the library in e!COCKPIT ... 3

Add the Library to Your Project .. 4

Specify how much memory will be needed for your implementation ..5

Create persistent memory structures which will be used by the library ... 6

Add necessary variables to the Program which calls the library function block 7

Add supporting Code to the Program ... 8

Link Program Visualizations to Library Visualizations .. 9

Adjust e!COCKPIT project Task Interval ... 10

Licensing ... 12

Trial Mode ... 12

Steps to Obtain a Runtime License .. 12

Modifying your PLC program without corrupting library data ... 13

How your program can interact with the Library ... 14

Reading Current Accumulated Loadout Quantities from your program ... 14

Reading Current Tank height and inventory information ... 14

Reading Current Pump Controller status information .. 14

Reading and Writing Tank configuration parameters .. 15

Reading and Writing Pump Controller configuration parameters .. 15

Page 3 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Obtain the library file
Request the appropriate BhiLibTank.compiled-library from www.Beyond-HMI.com.

Install the library in e!COCKPIT
 Open any project in e!COCKPIT
 Navigate to a Library Manager

 Select Library Repository

 Select Install..
 Navigate to the downloaded library file and click on Open.
 Verify that the library was installed in the Miscellaneous section

Page 4 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Add the Library to Your Project
 Create a project and designate the Device(s) in the project.
 Navigate to a Library Manager

Select Add Library

Page 5 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Start typing the library name until the library appears in bold text

Select the Library and select OK.

Specify how much memory will be needed for your implementation

The BhiLibTank library can support from 1 to 254 tanks and from 1 to 254 pump controllers.
Each one of these entities occupies a certain amount of persistent memory and a certain
amount of volatile memory. For efficient memory utilization, the host PLC program (your
program) must specify the number of instances of each entity type. Select these quantities
carefully – so PLC memory is not wasted.

Also, depending upon how you will use strapping tables and how many strapping table you will
use, you will need to specify some quantities to indicate ho much memory the library will
allocate for tank strapping table data.

Good coding practices suggest that these quantities should be specified as global constants.
However, this is not strictly required. The code sample below shows how these global constants
might be declared.

/{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT

 NUM_TANKS : BYTE := 3;
 NUM_PUMP_CONTROLLERS : BYTE := 2;
 NUM_STRAPPING_TABLES : BYTE := 2;
 NUM_STRAPPING_DETAILS : UINT := 1024;
END_VAR

Page 6 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

The table below provides some description of the constants declared in the sample above and
their usage:

Variable Description Valid Range
NUM_TANKS Maximum number of tanks to

monitor
0 thru 254 (do not use 255)

NUM_PUMP_CONTROLLERS Maximum number of pump
controllers to process

0 thru 254 (do not use 255)

NUM_STRAPPING_TABLES Maximum number of strapping
tables which will be used in the
installation

0 thru 10. A limit of 10
strapping tables is hard-
coded in the library.

NUM_STRAPPING_DETAILS Total number of strapping table
rows (combined total of all
strapping tables)*

0 through 65534

 A strapping table “row” is a pair of (tank height, tank volume). Regardless of number of
strapping tables used, all “rows” are stored in a common list. For example, if you have one table
with only 10 rows and second table with 300 rows and a third table with 400 rows, you only need
to allocate a total of 710 rows. It is good practice to round up, so the recommended setting for
this case would be “NUM_STRAPPING_DETAILS : UINT := 1024;”.

Create persistent memory structures which will be used by the library

The library needs some of its data structures to persist – even when the PLC program is loaded
or the power to the PLC is cycled. Your program needs to allocated memory which will hold
these structures and will also be maintained by the PLC in a persistent state.

If one has not already been created, add a Persistent Variables Object to the Project

Add the following declarations to the persistent memory area (Copy these lines into the
e!COCKPIT window):

VAR_GLOBAL PERSISTENT RETAIN

host_memArea : ARRAY[0..(NUM_TANKS * (SIZEOF(TankConfig) + SIZEOF(TankAccums))) +
(NUM_PUMP_CONTROLLERS * SIZEOF(PumpControllerConfig)) + (64)] OF BYTE;
END_VAR

Note that in the example above, global constants are used for some of the
quantities. See the previous section for details about the meaning of these

constants. Literal number could be used – if desired.

Page 7 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Add necessary variables to the Program which calls the library function block

The following global variables must be declared:

//{attribute 'qualified_only'}
VAR_GLOBAL

 (* HOST GLOBAL VARIABLES FOR PASSING CONSTANT SIZES TO LIBRARY *)
 host_numTanks : BYTE := NUM_TANKS; // required
 host_numPumpControllers : BYTE := NUM_PUMP_CONTROLLERS; // required
 host_numStrappingTables : BYTE := NUM_STRAPPING_TABLES; // required
 host_numStrappingDetails : UINT := NUM_STRAPPING_DETAILS; // required
 host_memAreaSize : UDINT := (NUM_TANKS * (SIZEOF(TankConfig) +
SIZEOF(TankAccums))) + (NUM_PUMP_CONTROLLERS * SIZEOF(PumpControllerConfig)) +
(64);

 (* VOLATILE MEMORY STRUCTURES DECLARED BY HOST PROGRAM AND PASSED TO LIBRARY
FOR LIBRAY USE *)
 sTankInputFilters : ARRAY [0..((2*NUM_TANKS) - 1)] OF BhiInputFilter;

Page 8 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

 strappingHeaders : ARRAY [1..NUM_STRAPPING_TABLES] OF TankStrappingHeader;
 strappingDetails : ARRAY [1..NUM_STRAPPING_DETAILS] OF StrappingDetail;
 tankCurrentStatus : ARRAY [1..NUM_TANKS] OF TankCurrentStatus;
 pumpControllerCurrentStatus : ARRAY [1..NUM_PUMP_CONTROLLERS] OF
PumpControllerCurrentStatus;

END_VAR

Add supporting Code to the Program

The following illustrates how the library can be used with a Structured Text Program.

PROGRAM PLC_PRG
VAR
 ///
 // THIS VARIABLE IS USED TO CONTROL THE FLOW OF THE MAIN PROGRAM
 // ON FIRST TASK CYCLE, CERTAIN INITIALIZATION/HOUSEKEEPING TASKS MUST BE
DONE - JUST ONCE
 ///
 xIsInitialized : BOOL := FALSE;

 ///
 // YOU MUST DECLARE AN INSTANCE OF THE TankTwin FUNCTION BLOCK
 ///

 theTankManager : TankTwin;

END_VAR

IF (xIsInitialized) THEN

 ///
//
 // AFTER INITIALIZATION (one time), PERFORM THIS CYCLE OF CALLS TO THE
LIBRARY
 ///
/

 // for each tank, your code needs to interact with the I/O or network and get
the latest values from tank gaugers
 // the example below shows how to update the library for tank 3 with the
latest values (tanks are "one indexed")
 // this code assumes that your program (elsewhere) is updating the variables
rTank3Top and rTank3Interface
 // NOTE THAT THE UPDATE CALL ONLY NEEDS TO BE EXECUTED WHEN THE "TOP" AND/OR
"INTERFACE" LEVELS HAVE BEEN UPDATED BY THE GAUGER (EG: WIRELESS)
 // HOWEVER, IT IS OK TO MAKE THIS CALL ON EVERY SCAN - USING THE SAME VALUE
MULTIPLE TIMES - UNTIL THE GAUGER VALUE IS UPDATED
 theTankManager.UpdateTank(3,rTank3Top,rTank3Interface);

 // call the tank manager block on each scan
 theTankmanager();

Page 9 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

 // if you are using pump controllers, call the "UpdatePumpController" method
on each scan for each pump controller
 // the example below shows how to update pump controller number 1
(pumpcontrollers are "one indexed")
 // this code assumes that your program (elsewhere) is interacting with the
I/O or network to obtain the most recent status of the HOA switch and permissive
 // NOTE: the return value from the "UpdatePumpController" method is a BOOLEAN
- indicating whether the pump should be running or not
 xPumpCommand :=
theTankManager.UpdatePumpController(1,xHandState,xAutoState,xPermissiveState);

ELSE
 // the first call made to the library should be to the "FuInitialize" method
 // in this call, you pass size parameters and pointers to the memory that
your program allocated for library use
 theTankmanager.FuInitialize(ADR(host_memArea),
 host_memAreaSize,
 host_numTanks,
 host_numPumpControllers,
 ADR(sTankInputFilters),
 TRUE, // boolean indicating whether
to use tank gauger filtering (applies to all tanks)
 host_numStrappingTables,
 ADR(strappingHeaders),
 host_numStrappingDetails,
 ADR(strappingDetails),
 ADR(tankCurrentStatus),
 ADR(pumpControllerCurrentStatus));

 xIsInitialized := TRUE;
END_IF

Link Program Visualizations to Library Visualizations
The library includes a number of visualizations for interacting with the Tank and Pump
Controller functions. The library visualizations can all be accessed from
BhiLibTank.visTankMain. The screen capture below shows an example of a simple
visualization containing a single button linking to the flow computer menu Visu.

Page 10 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Adjust e!COCKPIT project Task Interval
The library needs to be called should be called at least every 500 milliseconds. If less than 10
tanks are being monitored or if the tank gauger values are updating infrequently (e.g.
wirelessly), then 500 msec scan rate is adequate. For installations with significantly higher
tank counts, a scan frequency of 250 msec or even 100 msec might make the library more
responsive. There is not really any good reason to scan faster than 100 msec. You can adjust the
scan frequency of this task to manage PLC CPU loading.

Page 11 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Page 12 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Licensing
The BhiLibTank library utilizes runtime licensing. Each PLC upon which it runs must have a
license. Licenses ae obtained from Beyond HMI, Inc.

Trial Mode
Upon startup, the library will run in trial mode for approximately 4 days. While in trial mode, the
library is fully functional. After the 4 day period passes – and if no license is installed - the
library will stop calculating.

If the PLC program is stopped and restarted, the 4 day trail period begins again. Therefore, PLC
program developers should be able to develop and test programs without needing a license for
their development PLCs.

Steps to Obtain a Runtime License
To fully license the BhiLibTank library on a PLC, the following steps must be executed:

 Include library features in a PLC program (reference other instructions for PLC program
developers within in this document)

 Install the PLC program on the target PLC specimen
 Open the library’s Admin screen and capture the Site Code
 Transmit the site code to Beyond HMI, Inc. and provide payment information

o Please use info@beyond-hmi.com to initiate contact with us.
 Wait for Beyond HMI, Inc. to return a license file
 Install the license file (using Beyond HMI’s free software “BLT”)
 Open the library’s Admin screen and confirm that the license check result is green

Licenses are perpetual. No maintenance fee is required. Licenses are keyed to a site code and
are not portable between PLCs. Please contact Beyond HMI if you need to move a license to
another PLC.

Page 13 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

Modifying your PLC program without corrupting library
data

Your PLC program will inevitably need to be modified – possibly after library configuration has
been done and loadouts have been accumulated by the library. Certain changes to your PLC
program (adding persistent variables, for example) can cause data in the library’s memory space
to be cleared or corrupted. Beyond HMI has developed tools to support changing your PLC
program without losing persistent library data. The following section describes the procedure
you should follow to maintain the integrity of your library data while making PLC programming
changes:

Note: The following steps must be executed in order. Please read and study the
entire procedure list before beginning PLC program maintenance.

Save a maintenance file

Check the Save Maintenance File checkbox on the Advanced Admin screen. Wait for the
checkbox to be unchecked. This indicates that a maintenance file has been saved to the
PLC file system.

Perform PLC program maintenance

At this point, you are free to make changes to the PLC program and load those changes
onto the PLC.

Force Maintenance Recovery

Check the Force Maintenance Recovery checkbox on the Advanced Admin screen. Wait
for the checkbox to be unchecked. This indicates that meter accumulators have been
recovered from the maintenance file.

Page 14 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

How your program can interact with the Library
In addition to the requirements of initializing the library and passing live meter readings to the
library, your program code can interact with the BhiLibTank library to:

 Read current accumulation of tank loadout quantities (daily, weekly)
 Read current tank height and inventory information
 Read current pump controller status information
 Read and Write tank configuration parameters
 Read and Write pump controller configuration parameters

The following sections provide further detail about how to execute these interactions from your
program code.

Reading Current Accumulated Loadout Quantities from your program

Use the TankTwin.GetTankLoadoutStats method to accumulated tank loadout volumes.

This method takes a single input parameter:

 tank number (1 for the tank, etc.)

And four input_output (by reference) parameters:

 Barrels today [UDINT]
 Barrels yesterday [UDINT]
 Barrels this Month [UDINT]
 Barrels Previous Month [UDINT]

Reading Current Tank height and inventory information
To obtain tank status information, simply read from the tankCurrentStatus array in your
program. This array is a “one-indexed” array of TankCurrentStatus structures.

For instance, to read the current values for filtered tank top in feet, inches, and 18ths of an inch,
for the second tank, read:

 tankCurrentStatus[2].sTopFeetAndInches.iAs8ths_Feet
 tankCurrentStatus[2].sTopFeetAndInches.iAs8ths_Inch
 tankCurrentStatus[2].sTopFeetAndInches.iAs8ths_8ths

Reading Current Pump Controller status information
To obtain pump controller status information, simply read from the
pumpControllerCurrentStatus array in your program. This array is a “one-indexed” array of
PumpControllerCurrentStatus structures.

For instance, to read the current state of the commanded output from the first Pump Controller,
read:

Page 15 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

 pumpControllerCurrentStatus[2].booleanAttributes[OUTPUT_VALUE]

Reading and Writing Tank configuration parameters
To read tank configuration parameters from the library, use the TankTwin.GetTankConfig
method:

 Declare a variable of type TankConfig
 Call the GetTankConfig method on the TankTwin Function Block
 If the return value from the value from this call is TRUE, then read the parameter(s) of

interest

For instance, to read the height of the first tank instance:

myTankStruct : TankConfig;

IF (theTankTwin.GetTankConfig(1, myTankStruct)) THEN

 myVariable := myTankStruct. rTankHeight;

END_IF;

To modify configuration parameters in the library, use the TankTwin.GetTankConfig method to
get the current configuration, then modify the desired parameters, then use
TankTwin.SetTankConfig to set the library values.

 Declare a variable of type TankConfig
 Call the GetTankConfig method on the TankTwin Function Block
 If the return value from the value from this call is FALES, then there was an error
 Otherwise,

o modify the parameters in the TankConfig struct
o Call the SetTankConfig method

For instance, to modify the height of the first tank instance:

myTankStruct : TankConfig;

IF (theTankTwin.GetTankConfig(1, myTankStruct)) THEN

 myTankStruct. rTankHeight := <new value>;

theTankTwin.SetTankConfig(1, myTankStruct);

END_IF;

Reading and Writing Pump Controller configuration parameters
To read pump controller configuration parameters from the library, use the
TankTwin.GetPumpControllerConfig method:

 Declare a variable of type PumpControllerConfig
 Call the GetPumpControllerConfig method on the TankTwin Function Block

Page 16 of 16 TS_DG_2021_03_24 info@beyond-HMI.com

 If the return value from the value from this call is TRUE, then read the parameter(s) of
interest

For instance, to read the “pump on” high level for the first pump controller instance:

myPumpControllerStruct : PumpControllerConfig;

IF (theTankTwin.GetPumpControllerConfig(1, myPumpControllerStruct)) THEN

 myVariable := myPumpControllerStruct. rTankOnLevelSetpoint;

END_IF;

To modify configuration parameters in the library, use the TankTwin. GetPumpControllerConfig
method to get the current configuration, then modify the desired parameters, then use
TankTwin. SetPumpControllerConfig to set the library values.

 Declare a variable of type PumpControllerConfig
 Call the GetPumpControllerConfig method on the TankTwin Function Block
 Otherwise,

o modify the parameters in the PumpControllerConfig struct
o Call the SetPumpControllerConfig method

For instance, to modify the “pump on” high level for the first pump controller instance:

myPumpControllerStruct : PumpControllerConfig;

IF (theTankTwin.GetPumpControllerConfig(1, myPumpControllerStruct)) THEN

 myPumpControllerStruct. rTankOnLevelSetpoint := <new value>;

theTankTwin.SetPumpControllerConfig(1, myPumpControllerStruct);

END_IF;

